Skip to main content

Consider the following vectors with entries in $\R$: $\mathbf x=\xvector{n}$ Consider the following vectors with entries in $\Z$: $\mathbf w=\avector{w}{8}$ $\Intersect{1}{n}$ $\summation{1}{n}$ $\product{1}{n}$ $\trans$ $\Abs{A}{b}$ $\VofF{a}{F}$ $\Vfgpoly$ $\Vfghpoly$ $\Vfpoly{f}{a}$ $\matAn{A}{a}$ $\matAn{B}{b}$ $\matABn$ $A = B =\matn{a}$ $\mataplhaAn{\alpha}{a}$ $\mataplhaAn{\beta}{b}$ $\polya{b}$ $\polyab$ $\polyabc$ $\polyabcc$\\ $\polyzero$ $\polyazero$ $\polyazeroo$ $\polyaalpha{\alpha}{a}$ $\polyaalpha{\beta}{b}$ $\polyabalpha{\alpha}$ $\polyabalpha{\beta}$ $\polyabalphaa{\eta}$ $\polyaalpha{(\alpha+\beta)}{a}$ $\polyax{(a(b\alpha_k))}$

System of linear equations

Two equations in two unknowns

The following is a system of two linear equations in the two unknowns $x$ and $y$:

$x − y = 1$

$3x + 4y = 6$.

A solution to the system is a pair $(x, y)$ of numbers that satisfy both equations.

Each of these equations represents a line in the xy-plane, so a solution is a point in the intersection of the lines.

A linear equation is an equation of the form $a_1x_1 + a_2x_2 + · · · a_nx_n = b$, where $a_1, a_2, . . . , a_n$  and $b$ are numbers.

A system of linear equation has one of the following:

  • a unique solution,
  • infinitely many solutions,
  • no solution
Problem 1: (Unique solution) Solve the following system

$x − y = 1$

$3x + 4y = 6$.

Solution:

Given equations:

$\int_{a}^{b} \! f(x)\,\mathrm{d}x$

$n=\underbrace{1+1+\cdots+1}_{\text{$n$ times}},$

$\left\|\frac{a}{b}\right \|$

$\|\mathbf{v}\|$

generates
\[\begin{array}{c}
a_1x+b_1y+c_1z=d_1 \\
a_2x+b_2y+c_2z=d_2 \\
a_3x+b_3y+c_3z=d_3
\end{array}.
\]

\[
A=\begin{bmatrix}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{2}{3} &\frac{-1}{3} &\frac{-1}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{-2}{3}
\end{bmatrix}
\]

\[
A=\begin{bmatrix}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{2}{3} &\frac{-1}{3} &\frac{-1}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{-2}{3}
\end{bmatrix}
\]

$f(x)=\sum _{}^{}{\alpha }_{k}{x}^{k}\:and\:g(x)=\sum _{}^{}{\beta }_{k}{x}^{k}$

\begin{array}{ |c|c|c| }\hline a & a^2 \pmod{5} & 2a^2 \pmod{5}\\ \hline 0 & 0 & 0\\ 1 & 1 & 2\\ 2 & 4 & 3\\ 3 & 4 & 3\\ 4 & 1 & 2\\ \hline \end{array}

\begin{align*} f(ab)&=(ab)^2 && (\text{by definition of $f$})\\ &=(ab)(ab)\\ &=a^2 b^2 && (\text{since $G$ is abelian})\\ &=f(a)f(b) && (\text{by definition of $f$}). \end{align*}

\begin{align*} \det(A)&=1+(-1)^{n+1} \\ &= \begin{cases} 2 & \text{ if } n \text{ is odd}\\ 0 & \text{ if } n \text{ is even}. \end{cases} \end{align*}

\[ \left[\begin{array}{rrrr|r} 1 & 1 & 1 & 1 &1 \\ 0 & 1 & 2 & 3 & 5 \\ 0 & -2 & 0 & -2 & 2 \\ 0 & 1 & -2 & 3 & 1 \\ \end{array}\right] \xrightarrow{\substack{R_1-R_2 \ R_3-R_2 \ R_4-R_2}} \left[\begin{array}{rrrr|r} 1 & 0& -1 & -2 &-4 \\ 0 & 1 & 2 & 3 & 5 \\ 0 & 0 & 4 & 4 & 12 \\ 0 & 0 & -4 & 0 & -4 \\ \end{array}\right] \xrightarrow[\frac{-1}{4}R_4]{\frac{1}{4}R_3} \left[\begin{array}{rrrr|r} 1 & 0& -1 & -2 &-4 \\ 0 & 1 & 2 & 3 & 5 \\ 0 & 0 & 1 & 1 & 3 \\ 0 & 0 & 1 & 0& 1 \\ \end{array}\right] \]

\begin{align*} \left[\begin{array}{rrrrr|r} 1 & 0 & -1 & 0 &-2 & 1 \\ 0 & 1 & 3 & 0 & -1 & 2 \\ 2 & 0 & -2 & 1 & -3 & 0 \\ \end{array}\right] \xrightarrow{R_3-2R_1} \left[\begin{array}{rrrrr|r} 1 & 0 & -1 & 0 &-2 & 1 \\ 0 & 1 & 3 & 0 & -1 & 2 \\ 0 & 0 & 0 & 1 & 1 & -2 \\ \end{array}\right]. \end{align*}

\begin{align*} \mathbf{x}&=\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}=\begin{bmatrix} x_3+2x_5+1 \\ -3x_3+x_5+2 \\ x_3 \\ -x_5-2 \\ x_5 \end{bmatrix}\\[10pt] &=x_3\begin{bmatrix} 1 \\ -3 \\ 1 \\ 0 \\ 0 \end{bmatrix}+x_5\begin{bmatrix} 2 \\ 1 \\ 0 \\ -1 \\ 1 \end{bmatrix} +\begin{bmatrix} 1 \\ 2 \\ 0 \\ -2 \\ 0 \end{bmatrix}. \end{align*}

1. What is the full form of the RAM?





2. What is the Brain of a Computer?





Consider the following vectors with entries in $\R$: $\mathbf x=\xvector{n}$ Consider the following vectors with entries in $\Z$: $\mathbf w=\avector{w}{8}$ $\Intersect{1}{n}$ $\summation{1}{n}$ $\product{1}{n}$ $\trans$ $\Abs{A}{b}$

Comments

Popular posts from this blog

Problem 85: A manufacturer of external hard drives claims that only 10% of his drives require repairs within the warranty peroid of 12 months.

Problem 85: A manufacturer of external hard drives claims that only 10% of his drives require repairs within the warranty peroid of 12 months. a. If 5 of 20 of his drives required repairs within the first year, does this tend to support or refuse the claim? b. If 3 of 20 of his drives required repairs within the first year, does this tend to support or refuse the claim? Solution: a. If 5 of 20 of his drives required repairs within the first year Given that $n=20,$ and $p=0.3$ $\sum _{x=5}^{20}b(x;n,p)=\sum _{x=5}^{20}b(x;20,0.1)=1-\sum _{x=0}^{4}b(x;20,0.1)$ $ = 1 - [b(0;20,0.1)+b(1;20,0.1)+b(2;20,0.1)+b(3;20,0.1)+b(4;20,0.1)]$ $b(x;n,p)=\left(\begin{array}{c}n\\ x\end{array}\right){p}^{x}(1-p)^{n-x}$ $b(0;20,0.1) = \left(\begin{array}{c}20\\ 0\end{array}\right){0.1}^{0}(1-0.1)^{20-0} = 0.121577$ $b(1;20,0.1) = \left(\begin{array}{c}20\\ 1\end{array}\right){0.1}^{1}(1-0.1)^{20-1} = 0.27017$ $b(2;20,0.1) = \left(\begin{array}{c}20\\ 2\end{array}\right){0.1}^{...

Problem 56: Let $S = \{x \in \R^3 : x = (r-2s,3r+s,s), r,s \in \R \}$. Establish that $S$ is a subspace of $\R^3$.

Problem 56: Let $S = \{x \in \R^3 : x = (r-2s,3r+s,s), r,s \in \R \}$. Establish that $S$ is a subspace of $\R^3$. Solution: $S = \{x \in \R^3 : x = (r-2s,3r+s,s), r,s \in \R \}$. S is certainly nonempty. Let $x, y \in S$. Then for some $r, s, u,v \in \R$, $x = (r-2s,3r+s,s)$ and $y = (u-2v,3u+v,v)$. Hence, $x + y = (r-2s,3r+s,s) + (u-2v,3u+v,v)$ $= (r-2s+u-2v,3r+s+3u+v,s+v) = ((r+u)-2(s+v),3(r+u)+(s+v),(s+v))$ $= (k-2l,3k+l,l)$, where $k = r + u, l=s+v$. Consequently, $S$ is closed under addition. Further, if $c \in \R$, then $cx = c(r-2s,3r+s,s) = (c(r-2s),c(3r+s),cs) $ $= (cr-2cs,3cr+cs,cs) = (a-2b,3a+b,b)$, where $a = cr,b=cs$. Therefore $S$ is also closed under scalar multiplication. It follows that $S$ is a subspace of $\R^3$.

Problem 107: In a given city, 6% of all drivers get at least one parking ticket per year. Use the Poisson approximation to the binomial distribution to determine the probabilities that among 80 drivers randomly chosen in this given city:
a. 4 will get at least one parking ticket in any given year,
b. At least 3 will get at least at least one parking ticket in any given year,
c. Anywhere from 3 to 6, inclusive will get at least one parking ticket in any given year.

Problem 107: In a given city, 6% of all drivers get at least one parking ticket per year. Use the Poisson approximation to the binomial distribution to determine the probabilities that among 80 drivers randomly chosen in this given city: a. 4 will get at least one parking ticket in any given year, b. At least 3 will get at least at least one parking ticket in any given year, c. Anywhere from 3 to 6, inclusive will get at least one parking ticket in any given year. Solution: Poisson distribution, $f(x;\lambda )=\frac{{\lambda }^{x}{e}^{-\lambda }}{x!}$ a. 4 will get at least one parking ticket in any given year Given that $x=4, n=80, p=0.06, np = 4.8$ $f(4;4.8)=\frac{{4.8}^{4}{e}^{-4.8}}{4!} = 0.182029$ b. At least 3 will get at least at least one parking ticket in any given year Given that $x\ge 3, n=80, p=0.06, np = 4.8$ $P(x\ge 3) = 1-P(x $P(x=0) = f(0;4.8)=\frac{{4.8}^{0}{e}^{-4.8 }}{0!} = 0.00823$ $P(x=1) = f(1;4.8)=\frac{{4.8}^{1}{e}^{-4.8 }}{1!}...