Skip to main content

Problem 53: Prove that $P_n$ is a vector space

Problem 53: Prove that $P_n$ is a vector space<\p>

Solution:
The Axioms of a Vector Space
The following properties must hold for all $ u,v,w \in \V$ and $a,b \in \R$:
Closure Properties
$(A1) u+v \in \V$.
$(A2) av \in \V$.
Properties of Addition
$(A3) u+v=v+u$.
$(A4) u+(v+w)=(u+v)+w$.
$(A5)$ There is an element $\mathbf{0} \in \V$ such that $\mathbf{0}+v=v$ for all $v \in \V$.
$(A6)$ Given an element $v \in \V$, there is an element $−v \in \V$ such that $v+(−v)=\mathbf{0}$.
Properties of Scalar Multiplication
$(A7) a(bv)=(ab)v$.
$(A8) a(u+v)=au+av$.
$(A9) (a+b)v=av+bv$.
$(A10) 1v=v$ for all $v \in \V$.

Prove A1:
If $a_0 + a_1x + · · · + a_nx^n$ and $b_0 + b_1x + · · · + b_nx^n$ belong to $P_n$, then $(a_0 + a_1x + · · · + a_nx^n) + (b_0 + b_1x + · · · + b_nx^n)$
$= (a_0 + b_0) + (a_1 + b_1)x + · · · + (a_n + b_n)x^n$, which again belongs to $P_n$. Therefore, $P_n$ is closed under addition.

Prove A2:
If $a_0 + a_1x + · · · + a_nx^n$ and $r$ is a scalar, then
$r\cdot(a_0 + a_1x + · · · + a_nx^n) = (ra_0) + (ra_1)x + · · · + (ra_n)x^n$,
which again belongs to $P_n$. Therefore, $P_n$ is closed under scalar multiplication.

Prove A3:
Let $p(x) = a_0 + a_1x + · · · + a_nx^n$ and $q(x) = b_0 + b_1x + · · · + b_nx^n$ belong to $P_n$.
Then
$p(x) + q(x) = (a_0 + a_1x + · · · + a_nx^n) + (b_0 + b_1x + · · · + b_nx^n)$
$= (a_0 + b_0) + (a_1 + b_1)x + · · · + (a_n + b_n)x^n$
$= (b_0 + a_0) + (b_1 + a_1)x + · · · + (b_n + a_n)x^n$
$= (b_0 + b_1x + · · · + b_nx^n) + (a_0 + a_1x + · · · + a_nx^n)$
$= q(x) + p(x),$
so $P_n$ satisfies commutativity under addition.

Prove A4:
Let $p(x) = a_0 +a_1x+· · ·+a_nx^n, q(x) = b_0 +b_1x+· · ·+b_nx^n,$ and $r(x) = c0 +c1x+· · ·+cnx^n$ belong to $P_n$. Then
$\left[p(x) + q(x)\right] + r(x) = \left[(a_0 + a_1x + · · · + a_nx^n) + (b_0 + b_1x + · · · + b_nx^n)\right] + (c_0 + c_1x + · · · + c_nx^n)$
$= \left[(a_0 + b_0) + (a_1 + b_1)x + · · · + (a_n + b_n)x^n\right] + (c_0 + c_1x + · · · + c_nx^n)$
$= \left[(a_0 + b_0) + c_0\right] + \left[(a_1 + b_1) + c_1\right]x + · · · + \left[(a_n + b_n) + c_n\right]x^n$
$= \left[a_0 + (b_0 + c_0)\right] + \left[a_1 + (b_1 + c_1)\right]x + · · · + \left[a_n + (b_n + c_n)\right]x^n$
$= (a_0 + a_1x + · · · + a_nx^n) + \left[(b_0 + c_0) + (b_1 + c_1)x + · · · + (b_n + c_n)x^n\right]$
$= (a_0 + a_1x + · · · + a_nx^n) + \left[(b_0 + b_1x + · · · + b_nx^n) + (c_0 + c_1x + · · · + c_nx^n)\right]$
$= p(x) + \left[q(x) + r(x)\right],$
so $P_n$ satisfies associativity under addition.

Prove A5:
The zero vector is the zero polynomial $z(x) = 0 + 0x + · · · + 0x^n$, and it is readily verified that this
polynomial satisfies $z(x) + p(x) = p(x) = p(x) + z(x)$ for all $p(x) \in P_n$.

Prove A6:
The additive inverse of $p(x) = a_0 + a_1x + · · · + a_nx^n$ is
$−p(x) = (−a_0) + (−a_1)x + · · · + (−a_n)x^n$.
It is readily verified that $p(x) + (−p(x)) = z(x)$, where $z(x)$ is defined in A5.

Prove A7:
Let $r, s \in \R,$ and $p(x) = a_0 + a_1x + · · · + a_nx^n \in P_n$.
Then
$(rs)\cdot p(x) = (rs)\cdot(a_0 + a_1x + · · · + a_nx^n)$
$= \left[(rs)a_0\right] + \left[(rs)a_1\right]x + · · · + \left[(rs)a_n\right]x^n$
$= r\left[(sa_0) + (sa_1)x + · · · + (sa_n)x^n\right]$
$= r\left[s(a_0 + a_1x + · · · + a_nx^n)\right]$
$= r\cdot(s\cdotp(x))$,
which verifies the associativity of scalar multiplication.

Prove A8:
Let $r \in \R$, Let $p(x) = a_0 + a_1x + · · · + a_nx^n \in P_n$, and $let q(x) = b_0 + b_1x + · · · + b_nx^n \in P_n$.
Then
$r \cdot(p(x) + q(x)) = r \cdot ((a_0 + a_1x + · · · + a_nx^n) + (b_0 + b_1x + · · · + b_nx^n))$
$= r \cdot \left[(a_0 + b_0) + (a_1 + b_1)x + · · · + (a_n + b_n)x^n\right]$
$= \left[r(a_0 + b_0)\right] + \left[r(a_1 + b_1)\right]x + · · · + \left[r(a_n + b_n)\right]x^n$
$= \left[(ra_0) + (ra_1)x + · · · + (ra_n)x^n\right] + \left[(rb_0) + (rb_1)x + · · · + (rb_n)x^n\right]$
$= \left[r(a_0 + a_1x + · · · + a_nx^n)\right] + \left[r(b_0 + b_1x + · · · + b_nx^n)\right]$
$= r \cdot p(x) + r \cdot q(x)$,
which verifies the distributivity of scalar multiplication over vector addition.

Prove A9:
Let $r, s\in \R$ and $p(x) = a_0 + a_1x + · · · + a_nx^n \in P_n$.
Then
$(r + s) \cdot p(x) = (r + s) \cdot (a_0 + a_1x + · · · + a_nx^n)$
$= \left[(r + s)a_0\right] + \left[(r + s)a_1\right]x + · · · + \left[(r + s)a_n\right]x^n$
$= \left[ra_0 + ra_1x + · · · + ra_nx^n\right] + \left[sa_0 + sa_1x + · · · + sa_nx^n\right]$
$= r(a_0 + a_1x + · · · + a_nx^n) + s(a_0 + a_1x + · · · + a_nx^n)$
$= r \cdot p(x) + s \cdot p(x)$,
which verifies the distributivity of scalar multiplication over scalar addition.

Prove A10:
We have
$1\cdot(a_0 + a_1x + · · · + a_nx^n) = a_0 + a_1x + · · · + a_nx^n$,
which demonstrates the unit property in $P_n$.

$\therefore$ The above verification of axioms A1-A10 shows that $P_n$ is a vector space.

Comments

Popular posts from this blog

Problem 85: A manufacturer of external hard drives claims that only 10% of his drives require repairs within the warranty peroid of 12 months.

Problem 85: A manufacturer of external hard drives claims that only 10% of his drives require repairs within the warranty peroid of 12 months. a. If 5 of 20 of his drives required repairs within the first year, does this tend to support or refuse the claim? b. If 3 of 20 of his drives required repairs within the first year, does this tend to support or refuse the claim? Solution: a. If 5 of 20 of his drives required repairs within the first year Given that $n=20,$ and $p=0.3$ $\sum _{x=5}^{20}b(x;n,p)=\sum _{x=5}^{20}b(x;20,0.1)=1-\sum _{x=0}^{4}b(x;20,0.1)$ $ = 1 - [b(0;20,0.1)+b(1;20,0.1)+b(2;20,0.1)+b(3;20,0.1)+b(4;20,0.1)]$ $b(x;n,p)=\left(\begin{array}{c}n\\ x\end{array}\right){p}^{x}(1-p)^{n-x}$ $b(0;20,0.1) = \left(\begin{array}{c}20\\ 0\end{array}\right){0.1}^{0}(1-0.1)^{20-0} = 0.121577$ $b(1;20,0.1) = \left(\begin{array}{c}20\\ 1\end{array}\right){0.1}^{1}(1-0.1)^{20-1} = 0.27017$ $b(2;20,0.1) = \left(\begin{array}{c}20\\ 2\end{array}\right){0.1}^{...

Problem 56: Let $S = \{x \in \R^3 : x = (r-2s,3r+s,s), r,s \in \R \}$. Establish that $S$ is a subspace of $\R^3$.

Problem 56: Let $S = \{x \in \R^3 : x = (r-2s,3r+s,s), r,s \in \R \}$. Establish that $S$ is a subspace of $\R^3$. Solution: $S = \{x \in \R^3 : x = (r-2s,3r+s,s), r,s \in \R \}$. S is certainly nonempty. Let $x, y \in S$. Then for some $r, s, u,v \in \R$, $x = (r-2s,3r+s,s)$ and $y = (u-2v,3u+v,v)$. Hence, $x + y = (r-2s,3r+s,s) + (u-2v,3u+v,v)$ $= (r-2s+u-2v,3r+s+3u+v,s+v) = ((r+u)-2(s+v),3(r+u)+(s+v),(s+v))$ $= (k-2l,3k+l,l)$, where $k = r + u, l=s+v$. Consequently, $S$ is closed under addition. Further, if $c \in \R$, then $cx = c(r-2s,3r+s,s) = (c(r-2s),c(3r+s),cs) $ $= (cr-2cs,3cr+cs,cs) = (a-2b,3a+b,b)$, where $a = cr,b=cs$. Therefore $S$ is also closed under scalar multiplication. It follows that $S$ is a subspace of $\R^3$.

Problem 107: In a given city, 6% of all drivers get at least one parking ticket per year. Use the Poisson approximation to the binomial distribution to determine the probabilities that among 80 drivers randomly chosen in this given city:
a. 4 will get at least one parking ticket in any given year,
b. At least 3 will get at least at least one parking ticket in any given year,
c. Anywhere from 3 to 6, inclusive will get at least one parking ticket in any given year.

Problem 107: In a given city, 6% of all drivers get at least one parking ticket per year. Use the Poisson approximation to the binomial distribution to determine the probabilities that among 80 drivers randomly chosen in this given city: a. 4 will get at least one parking ticket in any given year, b. At least 3 will get at least at least one parking ticket in any given year, c. Anywhere from 3 to 6, inclusive will get at least one parking ticket in any given year. Solution: Poisson distribution, $f(x;\lambda )=\frac{{\lambda }^{x}{e}^{-\lambda }}{x!}$ a. 4 will get at least one parking ticket in any given year Given that $x=4, n=80, p=0.06, np = 4.8$ $f(4;4.8)=\frac{{4.8}^{4}{e}^{-4.8}}{4!} = 0.182029$ b. At least 3 will get at least at least one parking ticket in any given year Given that $x\ge 3, n=80, p=0.06, np = 4.8$ $P(x\ge 3) = 1-P(x $P(x=0) = f(0;4.8)=\frac{{4.8}^{0}{e}^{-4.8 }}{0!} = 0.00823$ $P(x=1) = f(1;4.8)=\frac{{4.8}^{1}{e}^{-4.8 }}{1!}...