Problem 50: On $\R^+$, the set of positive real numbers, define the operations of addition and scalar multiplication as follows:
$x + y = xy$,
$c\cdot x = x^c$.
Note that the multiplication and exponentiation appearing on the right side of these formulas refer to the ordinary operations on real numbers.
Determine whether $\R^+$, together with these algebraic operations,is a vector space.
Solution:
The Axioms of a Vector Space
The following properties must hold for all $ u,v,w \in \V$ and $a,b \in \R$:
Closure Properties
$(A1) u+v \in \V$.
$(A2) av \in \V$.
Properties of Addition
$(A3) u+v=v+u$.
$(A4) u+(v+w)=(u+v)+w$.
$(A5)$ There is an element $\mathbf{0} \in \V$ such that $\mathbf{0}+v=v$ for all $v \in \V$.
$(A6)$ Given an element $v \in \V$, there is an element $−v \in \V$ such that $v+(−v)=\mathbf{0}$.
Properties of Scalar Multiplication
$(A7) a(bv)=(ab)v$.
$(A8) a(u+v)=au+av$.
$(A9) (a+b)v=av+bv$.
$(A10) 1v=v$ for all $v \in \V$.
Prove A1:
Let $x,y \in \R^+$
\begin{align*}
x+y = xy \in \R^+
\end{align*}
Prove A2:
Let $r \in \R$ and $x \in \R^+$
\begin{align*}
rx = x^r \in \R^+
\end{align*}
Prove A3:
Let $x,y \in \R^+$
\begin{align*}
x+y = xy = yx = y+x
\end{align*}
Prove A4:
Let $x,y,z \in \R^+$
\begin{align*}
(x+y)+z = (xy)+z\\
= (xy)z \\
= xyz \\
= x(yz) \\
= x(y+z) \\
= x+(y+z).
\end{align*}
Prove A5:
Let $x\in \R^+$ and $1 \in \R^+$
zero vector in this set is the real number $1$.
\begin{align*}
1+x = 1x\\
= x\\
= x1\\
= x+1
\end{align*}
Prove A6:
Let $x \in \R^+$ then additive inverese is $\frac{1}{x} \in \R^+$
\begin{align*}
x+\frac{1}{x} = x\frac{1}{x} \\
= 1 \\
= \frac{1}{x}x\\
= \frac{1}{x}+x
\end{align*}
Prove A7:
Let $x \in \R^+$ and $r,s \in \R$
\begin{align*}
(rs)x = x^{rs} \\
= x^{sr} \\
= (x^s)^r \\
= r\cdot x^s \\
= r\cdot (s\cdot x)
= r(sx)
\end{align*}
Prove A8:
Let $x,y \in \R^+$ and $r \in \R$
\begin{align*}
r(x+y) = (x+y)^r\\
= (xy)^r\\
= x^r+y^r\\
= rx+ry.
\end{align*}
Prove A9:
Let $x\in \R^+$ and $r,s \in \R$
\begin{align*}
(r+s)x = x^(r+s)\\
= x^rx^s\\
= x^r+x^s\\
= rx+sx
\end{align*}
Prove A10:
Let $x\in \R^+$ and $1 \in \R$
\begin{align*}
1\cdot x =x^1\\
= x
\end{align*}
Comments
Post a Comment