Problem 47: Prove that the set of all solutions to the homogeneous linear system $Ax=0$ is a vector space
Problem 47: Prove that the set of all solutions to the homogeneous linear system $Ax=0$ is a vector space
Solution: Given $\V = \{x\R^n:Ax =0,$ where $A$ is a fixed matrix $\}$
I. Properties under addition
i. Closure Property
Let $u,v \in \V$
\begin{align*}
A(u+v) = Au+Av \\
= 0+0=0\\
\therefore u+v \in \V.
\end{align*}
$\Rightarrow \V$ is closed under addition.
ii. Associativity:
Let $u,v,w \in \V$
Now,
\begin{align*}
A(\left[u+v\right]+w) = A(\left[(u+v+w)\right])\\
= Au+Av+Aw\\
= 0+0+0 = 0\\
\end{align*}
And,
\begin{align*}
A(u+\left[(v+w\right]) = A(\left[(u+v+w)\right])\\
= Au+Av+Aw\\
= 0+0+0 = 0\\
\therefore A(\left[u+v\right]+w) = A(u+\left[(v+w\right])
\end{align*}
$\Rightarrow$ Addition is associative in $\V$.
iii. Existence of additive identity:
For all $u \in \V, \exists 0 \in \V$
Now
\begin{align*}
A(u+0)=Au+A0 = 0 +0 = 0\\
A(0+u)=A0+Au = 0 +0 = 0\\
\end{align*}
$\Rightarrow 0$ is the additive identity in $\V$.
iv. Existence of additive inverse:
Let $u \in \V$, be any element $-u\in \V$
Now
\begin{align*}
A(u+-u)= Au+ A(-u)=Au - Au = 0-0=0\\
A(-u+u)= A(-u)+Au=-Au+Au = -0+0 = 0\\
\end{align*}
$\Rightarrow -u$ is the additive inverse of $u$ for each $u \in \V$.
v. Commutative Law:
Let $ u,v \in \V$,
Now
\begin{align*}
A(u+v)= Au+Av\\
= Av+Au = A(v+u)
\end{align*}
$\Rightarrow$ addition is commutative in $\V$.
II. Properties under Scalar Multiplication
vi. Closure under Scalar Multiplication
Let $\alpha\in \R$ and $u \in \V$
\begin{align*}
A(\alpha u) = \alpha Au = \alpha 0 = 0\\
\therefore \alpha u \in \V
\end{align*}
$\Rightarrow \V$ is closed under Scalar Multiplication.
vii.Distributivity of Addition of Real Numbers
Let $\alpha, \beta\in \R$ and $u \in \V$
\begin{align*}
A((\alpha+\beta)u)= (\alpha+\beta)Au =(\alpha+\beta)0 =0\\
A(\alpha u) +A(\beta u) = \alpha Au+\beta Au = \alpha 0 + \beta 0 =0+0=0
\end{align*}
$\Rightarrow A((\alpha+\beta)u) = A(\alpha u)+A(\beta u)$.
$\Rightarrow $ Distributivity of Addition of Real Numbers does exists.
viii. Distributivity of Addition of Vectors
Let $\alpha\in \R$ and $u, v \in \V$
Now,
\begin{align*}
A(\alpha\left[u+v\right])= A(\alpha u + \alpha v)\\
= A(\alpha u) + A(\alpha v)\\
=\alpha Au+\alpha Av\\
= \alpha 0 + \alpha 0\\
=0+0 =0
\end{align*}
And,
\begin{align*}
A(\alpha u) +A(\alpha v) =\alpha Au+\alpha Av\\
= \alpha 0 + \alpha 0\\
= 0+0 =0
\end{align*}
$\Rightarrow $ Distributivity of Addition of Vectors exists.
ix.Associativity of multiplication
Let $\alpha, \beta\in \R$ and $u\in \V$
\begin{align*}
A((\alpha\beta)u)= (\alpha\beta)Au\\
= \alpha(\beta Au\\
=\alpha(\beta Au)
\end{align*}
$\Rightarrow$ Associativity of multiplication exists.
x. Unity element multiplication
Let 1 be unity element of field $\F$ and $u\in \V$
Now
\begin{align*}
A(1\cdot u)= A1\cdot Au\\
= A1\cdot 0 = 0
\end{align*}
$\Rightarrow 1\cdot u = u \forall u \in \V$.
Hence, $\V$ is a vector space over $\R$.
Comments
Post a Comment