Problem 46: Prove that the set of all solutions to the DE $y\text{'}+9y=0$ is a vector space
Solution: Given $\V = \{y:y'+9y=0\}$
I. Properties under addition
i. Closure Property
Let $u,v \in \V$ then $u'+9u=0$ and $v'+9v=0$
\begin{align*}
u+v = (u+v)'+9(u+v) \\
= (u'+v')+ 9(u+v)\\
= u'+9u+v'+9v\\
= 0+0=0\\
\therefore u+v \in \V.
\end{align*}
$\Rightarrow \V$ is closed under addition.
ii. Associativity:
Let $u,v,w \in \V$ then $u'+9u=0$, $v'+9v=0$ and $w'+9w=0$
Now,
\begin{align*}
\left[u+v\right]+w = \left[(u'+9u)+(v'+9v)\right]+(w'+9w)\\
= \left[(u'+9u+v'+9v)\right]+(w'+9w)\\
= \left[(u'+9u+v'+9v+w'+9w)\right]\\
= \left[(u'+9u)+(v'+9v+w'+9w)\right]\\
= (u'+9u)+\left[(v'+9v+w'+9w)\right]\\
= (u'+9u)+\left[(v'+9v)+(w'+9w)\right]\\
= u+\left[(v+w\right]\\
\end{align*}
$\Rightarrow$ Addition is associative in $\V$.
iii. Existence of additive identity:
For all $u \in \V, \exists 0 \in \V$
Now
\begin{align*}
u+0=(u'+9u)+0 = (u'+9u) = u\\
0+u=0+(u'+9u) = (u'+9u) = u\\
\end{align*}
$\Rightarrow 0$ is the additive identity in $\V$.
iv. Existence of additive inverse:
Let $u \in \V$, be any element $-u\in \V$
Now
\begin{align*}
u+-u= (u'+9u)+ (-u'-9u)=0\\
-u+u= (-u'-9u)+(u'+9u)=0\\
\end{align*}
$\Rightarrow -u$ is the additive inverse of $u$ for each $u \in \V$.
v. Commutative Law:
Let $ u,v \in \V$,
Now
\begin{align*}
u+v= (u'+9u)+(v'+9v)\\
= (v'+9v)+(u'+9u) = v+u
\end{align*}
$\Rightarrow$ addition is commutative in $\V$.
II. Properties under Scalar Multiplication
vi. Closure under Scalar Multiplication
Let $\alpha\in \R$ and $u \in \V$
\begin{align*}
\alpha u = (\alpha u)'+9(\alpha u)\\
= \alpha u' + 9\alpha u\\
= \alpha (u'+9u) = \alpha \cdot 0 = 0\\
\therefore \alpha u \in \V
\end{align*}
$\Rightarrow \V$ is closed under Scalar Multiplication.
vii.Distributivity of Addition of Real Numbers
Let $\alpha, \beta\in \R$ and $u \in \V$
\begin{align*}
(\alpha+\beta)u= ((\alpha+\beta) u)'+9(\alpha+\beta) u)\\
= \alpha u'+\beta u' + 9 \alpha u + 9 \beta u\\
= \alpha u' + 9 \alpha u + \beta u' + 9 \beta u\\
= \alpha (u'+9u) + \beta (u'+9u)\\
= \alpha u + \beta u
\end{align*}
$\Rightarrow (\alpha+\beta)u = \alpha u+\beta u$.
$\Rightarrow $ Distributivity of Addition of Real Numbers does exists.
viii. Distributivity of Addition of Vectors
Let $\alpha\in \R$ and $u, v \in \V$
\begin{align*}
\alpha\left[u+v\right]= \alpha\left[(u'+9u)+(v'+9v)\right]\\
= \left[\alpha((u'+9u)+(v'+9v))\right]\\
= \left[\alpha(u'+9u)+\alpha(v'+9v)\right]\\
= \left[\alpha(u'+9u)+\alpha(v'+9v)\right]\\
=\alpha(u'+9u)+\alpha(v'+9v)\\
=\alpha u+\alpha v\\
\end{align*}
$\Rightarrow $ Distributivity of Addition of Vectors exists.
ix.Associativity of multiplication
Let $\alpha, \beta\in \R$ and $u\in \V$
\begin{align*}
(\alpha\beta)u= (\alpha\beta)(u'+9u)\\
= \alpha(\beta(u'+9u)\\
=\alpha(\beta u)
\end{align*}
$\Rightarrow$ Associativity of multiplication exists.
x. Unity element multiplication
Let 1 be unity element of field $\F$ and $u\in \V$
Now
\begin{align*}
1.u= 1\cdot(u'+9u)\\
=(u'+9u)\\
= u
\end{align*}
$\Rightarrow 1.u = u \forall u \in \V$.
Hence, $\V$ is a vector space over $\R$.
Comments
Post a Comment