Problem 42: Let R be the field of reals and V be the set of all ordered pairs$(x,y)$, where x, y are reals. Define.
$(x_1,y_1)+(x_2,y_2) = (x_1+x_2,y_1+y_2) \forall (x_1,y_1),(x_2,y_2) \in \V$ and
$\alpha(x,y)=(\alpha x,y) \forall \alpha \in \R$ and $(x,y) \in \V$.
Show that V is not a vector space under the above defined operations.
Solution: Given $\V = \{(x,y):x,y \in \R\}$
I. Properties under addition
i. Closure Property
Let
\begin{align*}
(x_1,y_1),(x_2,y_2) \in \V\\
\Rightarrow x_1,y_1,x_2,y_2 \in \R \Rightarrow x_1+x_2,y_1+y_2 \in \R\\
\therefore (x_1,y_1)+(x_2,y_2) = (x_1+x_2,y_1+y_2) \in \V
\end{align*}
$\Rightarrow \V$ is closed under addition.
ii. Associativity:
Let
\begin{align*}
(x_1,y_1),(x_2,y_2),(x_3,y_3)\in \V\\
\end{align*}
Now,
\begin{align*}
\left[(x_1,y_1)+(x_2,y_2)\right]+(x_3,y_3) = \left[(x_1+x_2,y_1+y_2)\right]++(x_3,y_3)\\
= \left[(x_1+x_2)+x_3,(y_1+y_2)+y_3\right]\\
= \left[x_1+(x_2+x_3),y_1+(y_2+y_3)\right]\\
= (x_1,y_1)+\left[(x_2+x_3),(y_2+y_3)\right]\\
= (x_1,y_1)+\left[(x_2,y_2)+(x_3,y_3)\right]\\
\end{align*}
$\Rightarrow$ Addition is associative in $\V$.
iii. Existence of additive identity:
For all $(x_1,y_1) \in \V, \exists (0,0) \in \V$
Now
\begin{align*}
(x_1,y_1)+(0,0)=(x_1+0,y_1+0) = (x_1,y_1)\\
(0,0)+(x_1,y_1)=(0+x_1,0+y_1) = (x_1,y_1)\\
\end{align*}
$\Rightarrow (0,0)$ is the additive identity in $\V$.
iv. Existence of additive inverse:
Let $(x,y) \in \V$, be any element $(-x,-y)\in \V$
\begin{align*} \
\because x,y \in \R \Rightarrow -x,-y \in \R\\
\end{align*}
Now
\begin{align*}
(x,y)+(-x,-y)= (x+(-x),y+(-y))=(0,0)\\
(-x,-y)+(x,y)= ((-x)+x,(-y)+y)=(0,0)\\
\end{align*}
$\Rightarrow (-x,-y)$ is the additive inverse of $(x,y)$ for each $(x,y) \in \V$.
v. Commutative Law:
Let $ (x_1,y_1),(x_2,y_2) \in \V$,
Now
\begin{align*}
(x_1,y_1)+(x_2,y_2)= (x_1+x_2,y_1+y_2) = (x_2+x_1,y_2+y_1) = (x_2,y_2)+(x_1,y_1)
\end{align*}
$\Rightarrow$ addition is commutative in $\V$.
II. Properties under Scalar Multiplication
vi. Closure under Scalar Multiplication
Let $\alpha\in \R$ and $(x,y) \in \V$ s.t. $x,y \in \R$
\begin{align*}
\alpha (x,y) = (\alpha x,y) \in \V
\therefore \alpha (x,y) \in \V
\end{align*}
$\Rightarrow \V$ is closed under Scalar Multiplication.
vii.Distributivity of Addition of Real Numbers
Let $\alpha, \beta\in \R$ and $(x,y) \in \V$ s.t. $x,y \in \R$
\begin{align*}
(\alpha+\beta)(x,y)= ((\alpha+\beta) x,y) = (\alpha x + \beta x, y)
\end{align*}
And
\begin{align*}
\alpha(x,y)+\beta(x,y)= (\alpha x,y)+(\beta x,y) = (\alpha x+ \beta x, 2y)
\end{align*}
$\Rightarrow (\alpha+\beta)(x,y) \ne \alpha(x,y)+\beta(x,y)$ .
$\Rightarrow $ Distributivity of Addition of Real Numbers does not exists.
Hence, $\V$ is not a vector space over reals$.
Comments
Post a Comment