Problem 40: Is the following set form Vector space over reals?
All upper triangular matrices of order n over $\R$
Solution:
I. Properties under addition
i. Closure Property
Let $A,B \in \V$ = the vector spacr of upper traingular matrices.
i.e $\matAn{A}{a}$ and $\matAn{B}{b}$ then $a_{ij}, b_{ij} \in \R$ and $a_{ij} =0, b_{ij}=0$ for $i>j$.
Now $A+B = \matABn$, where $a_{ij}+b_{ij} =0+0=0$ for $i>j$
$\Rightarrow A+B$ is upper traingular matrix over reals.
$\therefore A+B \in \V$
$\Rightarrow \V$ is closed under addition.
ii. Associativity:
Let $A,B,C \in \V$ = the vector spacr of upper traingular matrices.
i.e $\matAn{A}{a}$,$\matAn{B}{b}$ and $\matAn{C}{c}$ then $a_{ij}, b_{ij},c_{ij} \in \R$ and $a_{ij} =0, b_{ij}=0, c_{ij}=0,$ for $i>j$.
\begin{align*}
\left[A+B\right]+C = \left[\matn{a}+\matn{b}\right]+\matn{c}\\
a_{ij} =0, b_{ij}=0, c_{ij}=0,\;for\;i>j.
=\matn{a}+\left[\matn{b}+\matn{c}\right]\\
=A+\left[B+C\right]\\
\end{align*}
$\Rightarrow$ Addition is associative.
iii. Existence of additive identity:
Let
\begin{align*}
O=\left[0\right]_{n \times n}
\end{align*}
Now
\begin{align*}
A+O=\matn{a}+\left[0\right]_{n \times n}\\
=\matnij{a_{ij}+0}\\
=\matn{a}\\
= A\\
\end{align*}
and
\begin{align*}
O+A=\left[0\right]_{n \times n}+\matn{a}\\
=\matnij{0+a_{ij}}\\
=\matn{a}\\
= A\\
\therefore A+O=A=O+A, a_{ij} =0, b_{ij}=0, c_{ij}=0,\;for\;i>j\\
\end{align*}
$\Rightarrow O$ is the additive identity.
iv. Existence of additive inverse:
let
\begin{align*}
\matAn{A}{a} \in \V\\
\matAn{-A}{-a} \in \V
\end{align*}
Now
\begin{align*}
A+(-A)==\matn{a}+\matn{-a}\\
=\matnij{a_{ij}+(-a_{ij})}\\
=O\\
\end{align*}
and
\begin{align*}
(-A)+A=\matn{-a}+\matn{a}\\
=\matnij{(-a_{ij})+a_{ij}}\\
=O\\
\therefore A+(-A)=O=(-A)+A a_{ij} =0\;for\;i>j\\
\end{align*}
$\Rightarrow -A$ is the additive inverse.
v. Commutative Law:
Let
\begin{align*}
\matAn{A}{a} \in \V\\
\matAn{B}{b} \in \V\\
\end{align*}
Now
\begin{align*}
A+B=\matn{a}+\matn{b}\\
=\matABn\\
=\matBAn\\
=\matn{b}+\matn{a}\\
= B+A\\
\end{align*}
$\Rightarrow$ addition is commutative.
II. Properties under Scalar Multiplication
vi. Closure under Scalar Multiplication
Let $\alpha\in \R$ then $\alpha A = \alpha\matn{a}$. where $\alpha a_{ij} \in \R$
and
\begin{align*}
\alpha\matn{a} = \alpha.0 = 0 \forall i>j\\
\end{align*}
$\therefore \alpha A$ is upper traingular matrix.
$\Rightarrow \V$ is closed under Scalar Multiplication.
vii. Distributivity of Addition of Vectors
Let $\alpha\in \R$ and $ \matAn{A}{a}, \matAn{B}{b}\in \V\\$
\begin{align*}
\alpha\left[A+B\right]= \alpha\left[\matn{a}+\matn{b}\right]\\
= \alpha\left[\matABn\right]\\
= \matnij{\alpha a_{ij}+\alpha b_{ij}}\\
= \matnij{\alpha a_{ij}}+\matnij{\alpha b_{ij}}\\
=\alpha \matn{a} + \alpha \matn{b}\\
=\alpha A+\alpha B\\
\end{align*}
$\Rightarrow $ Distributivity of Addition of Vectors exists.
viii.Distributivity of Addition of Real Numbers
Let $\alpha, \beta\in \R$ and $\matAn{A}{a} \in \V$
\begin{align*}
(\alpha+\beta)A= (\alpha+\beta)\matn{a}\\
= \matnij{(\alpha+\beta) a_{ij}}\\
= \matnij{\alpha a_{ij}+\beta a_{ij}}\\
= \matnij{\alpha a_{ij}}+\matnij{\beta a_{ij}}\\
=\alpha(\matn{a})+\beta(\matn{b})\\
=\alpha A+\beta B\\
\end{align*}
$\Rightarrow $ Distributivity of Addition of Real Numbers exists.
ix.Associativity of multiplication
Let $\alpha, \beta\in \R$ and $\matAn{A}{a} \in \V$
\begin{align*}
(\alpha\beta)A= (\alpha\beta)\matn{a}\\
= \matn{(\alpha\beta) a}\\
= \matn{\alpha(\beta a)}\\
= \alpha\matn{(\beta a)}
= \alpha \left[\beta \matn{a}\right]\\
=a(bA)
\end{align*}
$\Rightarrow$ Associativity of multiplication exists.
x. Unity element multiplication
Let 1 be unity element of field $\F$ and $\matAn{A}{a}\in \V$
Now
\begin{align*}
1.A= 1.\matn{a}\\
=\matn{1.a}\\
=\matn{a}\\
= A
\end{align*}
$\Rightarrow 1.A = A$.
Hence, $\V$ is a vector space over $\R$.
Comments
Post a Comment