Skip to main content

Problem 40: All upper triangular matrices of order n over $\R$. Vector space or not?

Problem 40: Is the following set form Vector space over reals?

All upper triangular matrices of order n over $\R$

Solution:
I. Properties under addition
i. Closure Property
Let $A,B \in \V$ = the vector spacr of upper traingular matrices.
i.e $\matAn{A}{a}$ and $\matAn{B}{b}$ then $a_{ij}, b_{ij} \in \R$ and $a_{ij} =0, b_{ij}=0$ for $i>j$.
Now $A+B = \matABn$, where $a_{ij}+b_{ij} =0+0=0$ for $i>j$
$\Rightarrow A+B$ is upper traingular matrix over reals.
$\therefore A+B \in \V$
$\Rightarrow \V$ is closed under addition.

ii. Associativity:
Let $A,B,C \in \V$ = the vector spacr of upper traingular matrices.
i.e $\matAn{A}{a}$,$\matAn{B}{b}$ and $\matAn{C}{c}$ then $a_{ij}, b_{ij},c_{ij} \in \R$ and $a_{ij} =0, b_{ij}=0, c_{ij}=0,$ for $i>j$.
\begin{align*} \left[A+B\right]+C = \left[\matn{a}+\matn{b}\right]+\matn{c}\\ a_{ij} =0, b_{ij}=0, c_{ij}=0,\;for\;i>j. =\matn{a}+\left[\matn{b}+\matn{c}\right]\\ =A+\left[B+C\right]\\ \end{align*} $\Rightarrow$ Addition is associative.

iii. Existence of additive identity:
Let \begin{align*} O=\left[0\right]_{n \times n} \end{align*} Now \begin{align*} A+O=\matn{a}+\left[0\right]_{n \times n}\\ =\matnij{a_{ij}+0}\\ =\matn{a}\\ = A\\ \end{align*} and \begin{align*} O+A=\left[0\right]_{n \times n}+\matn{a}\\ =\matnij{0+a_{ij}}\\ =\matn{a}\\ = A\\ \therefore A+O=A=O+A, a_{ij} =0, b_{ij}=0, c_{ij}=0,\;for\;i>j\\ \end{align*} $\Rightarrow O$ is the additive identity.

iv. Existence of additive inverse:
let \begin{align*} \matAn{A}{a} \in \V\\ \matAn{-A}{-a} \in \V \end{align*} Now \begin{align*} A+(-A)==\matn{a}+\matn{-a}\\ =\matnij{a_{ij}+(-a_{ij})}\\ =O\\ \end{align*} and \begin{align*} (-A)+A=\matn{-a}+\matn{a}\\ =\matnij{(-a_{ij})+a_{ij}}\\ =O\\ \therefore A+(-A)=O=(-A)+A a_{ij} =0\;for\;i>j\\ \end{align*} $\Rightarrow -A$ is the additive inverse.

v. Commutative Law:
Let \begin{align*} \matAn{A}{a} \in \V\\ \matAn{B}{b} \in \V\\ \end{align*} Now \begin{align*} A+B=\matn{a}+\matn{b}\\ =\matABn\\ =\matBAn\\ =\matn{b}+\matn{a}\\ = B+A\\ \end{align*} $\Rightarrow$ addition is commutative.

II. Properties under Scalar Multiplication
vi. Closure under Scalar Multiplication
Let $\alpha\in \R$ then $\alpha A = \alpha\matn{a}$. where $\alpha a_{ij} \in \R$ and \begin{align*} \alpha\matn{a} = \alpha.0 = 0 \forall i>j\\ \end{align*} $\therefore \alpha A$ is upper traingular matrix. $\Rightarrow \V$ is closed under Scalar Multiplication.

vii. Distributivity of Addition of Vectors
Let $\alpha\in \R$ and $ \matAn{A}{a}, \matAn{B}{b}\in \V\\$ \begin{align*} \alpha\left[A+B\right]= \alpha\left[\matn{a}+\matn{b}\right]\\ = \alpha\left[\matABn\right]\\ = \matnij{\alpha a_{ij}+\alpha b_{ij}}\\ = \matnij{\alpha a_{ij}}+\matnij{\alpha b_{ij}}\\ =\alpha \matn{a} + \alpha \matn{b}\\ =\alpha A+\alpha B\\ \end{align*} $\Rightarrow $ Distributivity of Addition of Vectors exists.

viii.Distributivity of Addition of Real Numbers
Let $\alpha, \beta\in \R$ and $\matAn{A}{a} \in \V$ \begin{align*} (\alpha+\beta)A= (\alpha+\beta)\matn{a}\\ = \matnij{(\alpha+\beta) a_{ij}}\\ = \matnij{\alpha a_{ij}+\beta a_{ij}}\\ = \matnij{\alpha a_{ij}}+\matnij{\beta a_{ij}}\\ =\alpha(\matn{a})+\beta(\matn{b})\\ =\alpha A+\beta B\\ \end{align*} $\Rightarrow $ Distributivity of Addition of Real Numbers exists.

ix.Associativity of multiplication
Let $\alpha, \beta\in \R$ and $\matAn{A}{a} \in \V$ \begin{align*} (\alpha\beta)A= (\alpha\beta)\matn{a}\\ = \matn{(\alpha\beta) a}\\ = \matn{\alpha(\beta a)}\\ = \alpha\matn{(\beta a)} = \alpha \left[\beta \matn{a}\right]\\ =a(bA) \end{align*} $\Rightarrow$ Associativity of multiplication exists.

x. Unity element multiplication
Let 1 be unity element of field $\F$ and $\matAn{A}{a}\in \V$
Now \begin{align*} 1.A= 1.\matn{a}\\ =\matn{1.a}\\ =\matn{a}\\ = A \end{align*} $\Rightarrow 1.A = A$.

Hence, $\V$ is a vector space over $\R$.

Comments

Popular posts from this blog

Problem 85: A manufacturer of external hard drives claims that only 10% of his drives require repairs within the warranty peroid of 12 months.

Problem 85: A manufacturer of external hard drives claims that only 10% of his drives require repairs within the warranty peroid of 12 months. a. If 5 of 20 of his drives required repairs within the first year, does this tend to support or refuse the claim? b. If 3 of 20 of his drives required repairs within the first year, does this tend to support or refuse the claim? Solution: a. If 5 of 20 of his drives required repairs within the first year Given that $n=20,$ and $p=0.3$ $\sum _{x=5}^{20}b(x;n,p)=\sum _{x=5}^{20}b(x;20,0.1)=1-\sum _{x=0}^{4}b(x;20,0.1)$ $ = 1 - [b(0;20,0.1)+b(1;20,0.1)+b(2;20,0.1)+b(3;20,0.1)+b(4;20,0.1)]$ $b(x;n,p)=\left(\begin{array}{c}n\\ x\end{array}\right){p}^{x}(1-p)^{n-x}$ $b(0;20,0.1) = \left(\begin{array}{c}20\\ 0\end{array}\right){0.1}^{0}(1-0.1)^{20-0} = 0.121577$ $b(1;20,0.1) = \left(\begin{array}{c}20\\ 1\end{array}\right){0.1}^{1}(1-0.1)^{20-1} = 0.27017$ $b(2;20,0.1) = \left(\begin{array}{c}20\\ 2\end{array}\right){0.1}^{...

Problem 56: Let $S = \{x \in \R^3 : x = (r-2s,3r+s,s), r,s \in \R \}$. Establish that $S$ is a subspace of $\R^3$.

Problem 56: Let $S = \{x \in \R^3 : x = (r-2s,3r+s,s), r,s \in \R \}$. Establish that $S$ is a subspace of $\R^3$. Solution: $S = \{x \in \R^3 : x = (r-2s,3r+s,s), r,s \in \R \}$. S is certainly nonempty. Let $x, y \in S$. Then for some $r, s, u,v \in \R$, $x = (r-2s,3r+s,s)$ and $y = (u-2v,3u+v,v)$. Hence, $x + y = (r-2s,3r+s,s) + (u-2v,3u+v,v)$ $= (r-2s+u-2v,3r+s+3u+v,s+v) = ((r+u)-2(s+v),3(r+u)+(s+v),(s+v))$ $= (k-2l,3k+l,l)$, where $k = r + u, l=s+v$. Consequently, $S$ is closed under addition. Further, if $c \in \R$, then $cx = c(r-2s,3r+s,s) = (c(r-2s),c(3r+s),cs) $ $= (cr-2cs,3cr+cs,cs) = (a-2b,3a+b,b)$, where $a = cr,b=cs$. Therefore $S$ is also closed under scalar multiplication. It follows that $S$ is a subspace of $\R^3$.

Problem 107: In a given city, 6% of all drivers get at least one parking ticket per year. Use the Poisson approximation to the binomial distribution to determine the probabilities that among 80 drivers randomly chosen in this given city:
a. 4 will get at least one parking ticket in any given year,
b. At least 3 will get at least at least one parking ticket in any given year,
c. Anywhere from 3 to 6, inclusive will get at least one parking ticket in any given year.

Problem 107: In a given city, 6% of all drivers get at least one parking ticket per year. Use the Poisson approximation to the binomial distribution to determine the probabilities that among 80 drivers randomly chosen in this given city: a. 4 will get at least one parking ticket in any given year, b. At least 3 will get at least at least one parking ticket in any given year, c. Anywhere from 3 to 6, inclusive will get at least one parking ticket in any given year. Solution: Poisson distribution, $f(x;\lambda )=\frac{{\lambda }^{x}{e}^{-\lambda }}{x!}$ a. 4 will get at least one parking ticket in any given year Given that $x=4, n=80, p=0.06, np = 4.8$ $f(4;4.8)=\frac{{4.8}^{4}{e}^{-4.8}}{4!} = 0.182029$ b. At least 3 will get at least at least one parking ticket in any given year Given that $x\ge 3, n=80, p=0.06, np = 4.8$ $P(x\ge 3) = 1-P(x $P(x=0) = f(0;4.8)=\frac{{4.8}^{0}{e}^{-4.8 }}{0!} = 0.00823$ $P(x=1) = f(1;4.8)=\frac{{4.8}^{1}{e}^{-4.8 }}{1!}...