Problem 37: Is the following set form Vector space over reals?
All polynomials in x over R with constant term zero
Solution: Let $\Vfgpoly$,
where $f(0)=a_0=0$ and $g(0)=b_0=0$
I. Properties under addition
i. Closure Property
Let $f(x),g(x)$ is a real polynomial s.t. $f(0)=g(0)=0$.
Then $f(x)+g(x) = \polyab$
$f(0)+g(0) = a_0+b_0 = 0+0 =0 $
$\therefore f(x)+g(x) \in \V$
$\Rightarrow \V$ is closed under addition.
ii. Associativity:
Let $\Vfghpoly$
s.t $f(0)=a_0=0, g(0)=b_0=0,h(0)=c_0=0$
\begin{align*}
\left[f(x)+g(x)\right]+h(x) = \left[\polya{a}+\polya{b}\right]+\polya{c}\\
=\polyab+\polya{c}\\
=\polyabc\\
=\polyabcc\\
\because (a_k+b_k)+c_k = a_k+(b_k+c_k), a_k, b_k, c_k \in \F\\
=\polya{a}+\polyax{(b_k+c_k}\\
=\polya{a}+\left[\polya{b}+\polya{c}\right]\\
=f(x)+\left[g(x)+h(x)\right]\\
\end{align*}
$\Rightarrow$ Addition is associative.
iii. Existence of additive identity:
For each
\begin{align*}
\Vfpoly{f}{a} \in \V\\
O(x) = 0+0x+0x^2+...+0x^n+...\\
=\polyzero \in V\\
\end{align*}
Now
\begin{align*}
f(x)+O(x)=\polya{a}+\polyzero\\
=\polyazero\\
=\polya{a} = f(x)\\
\end{align*}
and
\begin{align*}
O(x)+f(x)=\polyzero+\polya{a}\\
=\polyazeroo\\
=\polya{a} = f(x)\\
\therefore f(x)+O(x)=f(x)=O(x)+f(x) \forall f(x) \in \V\\
\end{align*}
$\Rightarrow O(x)$ is the additive identity.
iv. Existence of additive inverse:
For each
\begin{align*}
\Vfpoly{f}{a} \in \V\\
-f(x)=\polyax{(-a_k)} \in \V\\
\because a_k \in \F \Rightarrow -a_k \in \F\\
\end{align*}
Now
\begin{align*}
f(x)+(-f(x))=\polya{a}+\polyax{(-a_k)}\\
=\polyax{\left[a_k+(-a_k)\right]}\\
=\polyzero = O(x)\\
\end{align*}
and
\begin{align*}
(-f(x))+f(x)=\polyax{(-a_k)}+\polya{a}\\
=\polyax{\left[(-a_k)+a_k\right]}\\
=\polyzero = O(x)\\
\therefore f(x)+(-f(x))=O(x)=(-f(x))+f(x) \forall f(x) \in \V\\
\end{align*}
$\Rightarrow -f(x)$ is the additive inverse.
v. Commutative Law:
Let
\begin{align*}
\Vfgpoly\\
\end{align*}
Now
\begin{align*}
f(x)+g(x)=\polya{a}+\polya{b}\\
=\polyab\\
=\polyba\\
=\polya{b}+\polya{a}\\
= g(x)+f(x)\\
\end{align*}
$\Rightarrow$ addition is commutative.
II. Properties under Scalar Multiplication
vi. Closure under Scalar Multiplication
Let $a\in \R$ and $\Vfpoly{f}{a} \in \V$
\begin{align*}
af(0)=a(0)=0\\
\therefore af(x) \in \V
\end{align*}
$\Rightarrow \V$ is closed under Scalar Multiplication.
vii. Distributivity of Addition of Vectors
Let $\alpha\in \R$ and $f(x), g(x) \in \V$
\begin{align*}
\alpha\left[f(x)+g(x)\right]= \alpha\left[\polya{a}+\polya{b}\right]\\
= \alpha\left[\polyab\right]\\
= \polyabalpha{\alpha}\\
= \polyabalphaa{\alpha}\\
=\polyaalpha{\alpha}{a}+\polyaalpha{\alpha}{b}\\
=\alpha(\polya{a})+\alpha(\polya{b})\\
=\alpha f(x)+\alpha g(x)\\
\end{align*}
$\Rightarrow $ Distributivity of Addition of Vectors exists.
viii.Distributivity of Addition of Real Numbers
Let $\alpha, \beta\in \R$ and $f(x)\in \V$
\begin{align*}
(\alpha+\beta)f(x)= (\alpha+\beta)\polya{a}\\
= \polyaalpha{(\alpha+\beta)}{a}\\
= \polyax{\left[\alpha a_k+\beta a_k\right]}\\
=\polyaalpha{\alpha}{a}+\polyaalpha{\beta}{a}\\
=\alpha(\polya{a})+\beta(\polya{a})\\
=\alpha f(x)+\beta f(x)\\
\end{align*}
$\Rightarrow $ Distributivity of Addition of Real Numbers exists.
ix.Associativity of multiplication
Let $\alpha, \beta\in \R$ and $f(x)\in \V$
\begin{align*}
(\alpha\beta)f(x)= (\alpha\beta)\polya{a}\\
= \polyax{((\alpha\beta)a_k)}\\
= \polyax{(\alpha(\beta {a_k}))}\\
= \alpha \left[\polyaalpha{\beta}{a}\right]\\
= \alpha \left[\beta\polya{a}\right]\\
=a(bf(x))
\end{align*}
$\Rightarrow$ Associativity of multiplication exists.
x. Unity element multiplication
Let 1 be unity element of field $\F$ and $f(x)\in \V$
Now
\begin{align*}
1.f(x)= 1.\polya{a}\\
=\polyax{(1.{a_k})}\\
=\polya{a}\\
= f(x)
\end{align*}
$\Rightarrow 1.f(x) = f(x) \forall f(x) \in \V$.
Hence, $\V$ is a vector space over $\R$.
Comments
Post a Comment