Skip to main content

Problem 36: Define Rank of matrix and provide examples

Problem 36: Define Rank of matrix and provide examples

Solution:

A number r is said to be the rank of a matrix A if it possesses the following two properties:

i. There is at least one square sub matrrix of A of order r whose determinant is not equal to zero.

ii. If the matrix A contains any square submatrix of order r+1, then the determinant of every square submatrix of A of order should be zero.

In short the rank of a matrix is the order of any highest order non-vanising minor of the matrix.

Examples:

(a.) Let \begin{align*} A =\left[\begin{array}{ccc} 1& 0& 0\\ 0& 1& 0\\ 0& 0& 1\\ \end{array}\right]\\ \end{align*} We have $|A|=1$. Therefore A is a non-singular matrix. Hence rank A = 3.

(b.) Let \begin{align*} A =\left[\begin{array}{ccc} 0& 0& 0\\ 0& 0& 0\\ 0& 0& 0\\ \end{array}\right]\\ \end{align*} Since A is the null matrix. Hence rank A = 0.

(c.) Let \begin{align*} A =\left[\begin{array}{ccc} 1& 2& 3\\ 2& 3& 4\\ 0& 2& 2\\ \end{array}\right]\\ \end{align*} We have $|A|=2 \ne 0$. Therefore A is a non-ingular matrix. Hence rank A = 3.

(d.) Let \begin{align*} A =\left[\begin{array}{ccc} 1& 2& 3\\ 3& 4& 5\\ 4& 5& 6\\ \end{array}\right]\\ \end{align*} We have $|A|=1(24-25)-2(18-20)+3(15-16)=0$. Therefore the rank of A is less than 3. Now there is atlease one minor of A of order which is not equal to zero. Henxe rank A =2.

(e.) Let \begin{align*} A =\left[\begin{array}{ccc} 3& 1& 2\\ 6& 2& 4\\ 3& 1& 2\\ \end{array}\right]\\ \end{align*} We have $|A|=0$. Also each 2-rowed minot of A is equal to zero. But A is not a null matrix. Henxe rank A =2.

Comments

Popular posts from this blog

Problem 85: A manufacturer of external hard drives claims that only 10% of his drives require repairs within the warranty peroid of 12 months.

Problem 85: A manufacturer of external hard drives claims that only 10% of his drives require repairs within the warranty peroid of 12 months. a. If 5 of 20 of his drives required repairs within the first year, does this tend to support or refuse the claim? b. If 3 of 20 of his drives required repairs within the first year, does this tend to support or refuse the claim? Solution: a. If 5 of 20 of his drives required repairs within the first year Given that $n=20,$ and $p=0.3$ $\sum _{x=5}^{20}b(x;n,p)=\sum _{x=5}^{20}b(x;20,0.1)=1-\sum _{x=0}^{4}b(x;20,0.1)$ $ = 1 - [b(0;20,0.1)+b(1;20,0.1)+b(2;20,0.1)+b(3;20,0.1)+b(4;20,0.1)]$ $b(x;n,p)=\left(\begin{array}{c}n\\ x\end{array}\right){p}^{x}(1-p)^{n-x}$ $b(0;20,0.1) = \left(\begin{array}{c}20\\ 0\end{array}\right){0.1}^{0}(1-0.1)^{20-0} = 0.121577$ $b(1;20,0.1) = \left(\begin{array}{c}20\\ 1\end{array}\right){0.1}^{1}(1-0.1)^{20-1} = 0.27017$ $b(2;20,0.1) = \left(\begin{array}{c}20\\ 2\end{array}\right){0.1}^{...

Problem 56: Let $S = \{x \in \R^3 : x = (r-2s,3r+s,s), r,s \in \R \}$. Establish that $S$ is a subspace of $\R^3$.

Problem 56: Let $S = \{x \in \R^3 : x = (r-2s,3r+s,s), r,s \in \R \}$. Establish that $S$ is a subspace of $\R^3$. Solution: $S = \{x \in \R^3 : x = (r-2s,3r+s,s), r,s \in \R \}$. S is certainly nonempty. Let $x, y \in S$. Then for some $r, s, u,v \in \R$, $x = (r-2s,3r+s,s)$ and $y = (u-2v,3u+v,v)$. Hence, $x + y = (r-2s,3r+s,s) + (u-2v,3u+v,v)$ $= (r-2s+u-2v,3r+s+3u+v,s+v) = ((r+u)-2(s+v),3(r+u)+(s+v),(s+v))$ $= (k-2l,3k+l,l)$, where $k = r + u, l=s+v$. Consequently, $S$ is closed under addition. Further, if $c \in \R$, then $cx = c(r-2s,3r+s,s) = (c(r-2s),c(3r+s),cs) $ $= (cr-2cs,3cr+cs,cs) = (a-2b,3a+b,b)$, where $a = cr,b=cs$. Therefore $S$ is also closed under scalar multiplication. It follows that $S$ is a subspace of $\R^3$.

Problem 107: In a given city, 6% of all drivers get at least one parking ticket per year. Use the Poisson approximation to the binomial distribution to determine the probabilities that among 80 drivers randomly chosen in this given city:
a. 4 will get at least one parking ticket in any given year,
b. At least 3 will get at least at least one parking ticket in any given year,
c. Anywhere from 3 to 6, inclusive will get at least one parking ticket in any given year.

Problem 107: In a given city, 6% of all drivers get at least one parking ticket per year. Use the Poisson approximation to the binomial distribution to determine the probabilities that among 80 drivers randomly chosen in this given city: a. 4 will get at least one parking ticket in any given year, b. At least 3 will get at least at least one parking ticket in any given year, c. Anywhere from 3 to 6, inclusive will get at least one parking ticket in any given year. Solution: Poisson distribution, $f(x;\lambda )=\frac{{\lambda }^{x}{e}^{-\lambda }}{x!}$ a. 4 will get at least one parking ticket in any given year Given that $x=4, n=80, p=0.06, np = 4.8$ $f(4;4.8)=\frac{{4.8}^{4}{e}^{-4.8}}{4!} = 0.182029$ b. At least 3 will get at least at least one parking ticket in any given year Given that $x\ge 3, n=80, p=0.06, np = 4.8$ $P(x\ge 3) = 1-P(x $P(x=0) = f(0;4.8)=\frac{{4.8}^{0}{e}^{-4.8 }}{0!} = 0.00823$ $P(x=1) = f(1;4.8)=\frac{{4.8}^{1}{e}^{-4.8 }}{1!}...