Skip to main content

Problem 17: State the conditions under which a system of non-homogeneous equations will have i. no solution ii. a unique solution iii. infinity of solutions

Problem 17: State the conditions under which a system of non-homogeneous equations will have i. no solution ii. a unique solution iii. infinity of solutions.

Solution: 

Let $AX=B$ be a system of linear non-homogeneous equations, where $A,X,B$ are $m\times n,n\times 1,m\times 1$ matrices respectively. 

 i. These equations will have no solution if the coefficient matrix $A$ and augmented matrix $\left[A|B\right]$ are not of the same rank. 

 ii. These equations will possess a unique solution if the matrices $A$ and augmented matrix $\left[A|B\right]$ are of the same rank and the rank is equal to the number of variables. 

 iii. These equations will have infinity of solutions if the matrices $A$ and augmented matrix $\left[A|B\right]$ are of the same rank and the rank is less than the number of variables.

Comments

Popular posts from this blog

Problem 85: A manufacturer of external hard drives claims that only 10% of his drives require repairs within the warranty peroid of 12 months.

Problem 85: A manufacturer of external hard drives claims that only 10% of his drives require repairs within the warranty peroid of 12 months. a. If 5 of 20 of his drives required repairs within the first year, does this tend to support or refuse the claim? b. If 3 of 20 of his drives required repairs within the first year, does this tend to support or refuse the claim? Solution: a. If 5 of 20 of his drives required repairs within the first year Given that $n=20,$ and $p=0.3$ $\sum _{x=5}^{20}b(x;n,p)=\sum _{x=5}^{20}b(x;20,0.1)=1-\sum _{x=0}^{4}b(x;20,0.1)$ $ = 1 - [b(0;20,0.1)+b(1;20,0.1)+b(2;20,0.1)+b(3;20,0.1)+b(4;20,0.1)]$ $b(x;n,p)=\left(\begin{array}{c}n\\ x\end{array}\right){p}^{x}(1-p)^{n-x}$ $b(0;20,0.1) = \left(\begin{array}{c}20\\ 0\end{array}\right){0.1}^{0}(1-0.1)^{20-0} = 0.121577$ $b(1;20,0.1) = \left(\begin{array}{c}20\\ 1\end{array}\right){0.1}^{1}(1-0.1)^{20-1} = 0.27017$ $b(2;20,0.1) = \left(\begin{array}{c}20\\ 2\end{array}\right){0.1}^{...

Problem 56: Let $S = \{x \in \R^3 : x = (r-2s,3r+s,s), r,s \in \R \}$. Establish that $S$ is a subspace of $\R^3$.

Problem 56: Let $S = \{x \in \R^3 : x = (r-2s,3r+s,s), r,s \in \R \}$. Establish that $S$ is a subspace of $\R^3$. Solution: $S = \{x \in \R^3 : x = (r-2s,3r+s,s), r,s \in \R \}$. S is certainly nonempty. Let $x, y \in S$. Then for some $r, s, u,v \in \R$, $x = (r-2s,3r+s,s)$ and $y = (u-2v,3u+v,v)$. Hence, $x + y = (r-2s,3r+s,s) + (u-2v,3u+v,v)$ $= (r-2s+u-2v,3r+s+3u+v,s+v) = ((r+u)-2(s+v),3(r+u)+(s+v),(s+v))$ $= (k-2l,3k+l,l)$, where $k = r + u, l=s+v$. Consequently, $S$ is closed under addition. Further, if $c \in \R$, then $cx = c(r-2s,3r+s,s) = (c(r-2s),c(3r+s),cs) $ $= (cr-2cs,3cr+cs,cs) = (a-2b,3a+b,b)$, where $a = cr,b=cs$. Therefore $S$ is also closed under scalar multiplication. It follows that $S$ is a subspace of $\R^3$.

Problem 107: In a given city, 6% of all drivers get at least one parking ticket per year. Use the Poisson approximation to the binomial distribution to determine the probabilities that among 80 drivers randomly chosen in this given city:
a. 4 will get at least one parking ticket in any given year,
b. At least 3 will get at least at least one parking ticket in any given year,
c. Anywhere from 3 to 6, inclusive will get at least one parking ticket in any given year.

Problem 107: In a given city, 6% of all drivers get at least one parking ticket per year. Use the Poisson approximation to the binomial distribution to determine the probabilities that among 80 drivers randomly chosen in this given city: a. 4 will get at least one parking ticket in any given year, b. At least 3 will get at least at least one parking ticket in any given year, c. Anywhere from 3 to 6, inclusive will get at least one parking ticket in any given year. Solution: Poisson distribution, $f(x;\lambda )=\frac{{\lambda }^{x}{e}^{-\lambda }}{x!}$ a. 4 will get at least one parking ticket in any given year Given that $x=4, n=80, p=0.06, np = 4.8$ $f(4;4.8)=\frac{{4.8}^{4}{e}^{-4.8}}{4!} = 0.182029$ b. At least 3 will get at least at least one parking ticket in any given year Given that $x\ge 3, n=80, p=0.06, np = 4.8$ $P(x\ge 3) = 1-P(x $P(x=0) = f(0;4.8)=\frac{{4.8}^{0}{e}^{-4.8 }}{0!} = 0.00823$ $P(x=1) = f(1;4.8)=\frac{{4.8}^{1}{e}^{-4.8 }}{1!}...