Skip to main content

Problem 103: Among the 13 countries that an international trade federation is considering for their next 4 annual conferences, 6 are in Asia. To avoid arguments, the selection is left to chance. If none of the countries can be selected more than once, what are the probabilities that
(a) all the conferences will be held in Asia?
(b) none of the conferences will be held in Asia?

Problem 103: Among the 13 countries that an international trade federation is considering for their next 4 annual conferences, 6 are in Asia. To avoid arguments, the selection is left to chance. If none of the countries can be selected more than once, what are the probabilities that
(a) all the conferences will be held in Asia?
(b) none of the conferences will be held in Asia?


Solution:


a. all the conferences will be held in Asia
Given that $x=4,n=4,a=6, N=13$
Hypergeometric distribution, $h(x;n,a,N)=\frac{\left(\begin{array}{c}a\\ x\end{array}\right)\left(\begin{array}{c}N-a\\ n-x\end{array}\right)}{\left(\begin{array}{c}N\\ n\end{array}\right)}$
$P(x=4) = h(4;4,6,13)=\frac{\left(\begin{array}{c}6\\ 4\end{array}\right)\left(\begin{array}{c}13-6\\ 4-4\end{array}\right)}{\left(\begin{array}{c}13\\ 4\end{array}\right)} = 0.020979.$

b. none of the conferences will be held in Asia
Given that $x=0,n=4,a=6, N=13$
Hypergeometric distribution, $h(x;n,a,N)=\frac{\left(\begin{array}{c}a\\ x\end{array}\right)\left(\begin{array}{c}N-a\\ n-x\end{array}\right)}{\left(\begin{array}{c}N\\ n\end{array}\right)}$
$P(x=0) = h(0;4,6,13)=\frac{\left(\begin{array}{c}6\\ 0\end{array}\right)\left(\begin{array}{c}13-6\\ 4-0\end{array}\right)}{\left(\begin{array}{c}13\\ 4\end{array}\right)} = 0.0489.$

Comments

Popular posts from this blog

Problem 98: If 6 of 18 new buildings in a city violate the building code, what is the probability that a building inspector, who randomly selects 4 of the new buildings for inspection, will catch
a. none of the buildings that violate the building code?
b. 1 of the new buildings that violate the building code?
c. 2 of the new buildings that violate the building code?
d. at least 3 of the new buildings that violate the building code?

Problem 98: If 6 of 18 new buildings in a city violate the building code, what is the probability that a building inspector, who randomly selects 4 of the new buildings for inspection, will catch a. none of the buildings that violate the building code? b. 1 of the new buildings that violate the building code? c. 2 of the new buildings that violate the building code? d. at least 3 of the new buildings that violate the building code? Solution: a. none of the buildings that violate the building code? Given that $x=0,n=4,a=6, N=18$ Hypergeometric distribution, $h(x;n,a,N)=\frac{\left(\begin{array}{c}a\\ x\end{array}\right)\left(\begin{array}{c}N-a\\ n-x\end{array}\right)}{\left(\begin{array}{c}N\\ n\end{array}\right)}$ $P(x=0) = h(0;4,6,18)=\frac{\left(\begin{array}{c}6\\ 0\end{array}\right)\left(\begin{array}{c}18-6\\ 4-0\end{array}\right)}{\left(\begin{array}{c}18\\ 4\end{array}\right)} = 0.16176.$ b. 1 of the new buildings that violate the building code? Given ...

Problem 56: Let $S = \{x \in \R^3 : x = (r-2s,3r+s,s), r,s \in \R \}$. Establish that $S$ is a subspace of $\R^3$.

Problem 56: Let $S = \{x \in \R^3 : x = (r-2s,3r+s,s), r,s \in \R \}$. Establish that $S$ is a subspace of $\R^3$. Solution: $S = \{x \in \R^3 : x = (r-2s,3r+s,s), r,s \in \R \}$. S is certainly nonempty. Let $x, y \in S$. Then for some $r, s, u,v \in \R$, $x = (r-2s,3r+s,s)$ and $y = (u-2v,3u+v,v)$. Hence, $x + y = (r-2s,3r+s,s) + (u-2v,3u+v,v)$ $= (r-2s+u-2v,3r+s+3u+v,s+v) = ((r+u)-2(s+v),3(r+u)+(s+v),(s+v))$ $= (k-2l,3k+l,l)$, where $k = r + u, l=s+v$. Consequently, $S$ is closed under addition. Further, if $c \in \R$, then $cx = c(r-2s,3r+s,s) = (c(r-2s),c(3r+s),cs) $ $= (cr-2cs,3cr+cs,cs) = (a-2b,3a+b,b)$, where $a = cr,b=cs$. Therefore $S$ is also closed under scalar multiplication. It follows that $S$ is a subspace of $\R^3$.

Problem 107: In a given city, 6% of all drivers get at least one parking ticket per year. Use the Poisson approximation to the binomial distribution to determine the probabilities that among 80 drivers randomly chosen in this given city:
a. 4 will get at least one parking ticket in any given year,
b. At least 3 will get at least at least one parking ticket in any given year,
c. Anywhere from 3 to 6, inclusive will get at least one parking ticket in any given year.

Problem 107: In a given city, 6% of all drivers get at least one parking ticket per year. Use the Poisson approximation to the binomial distribution to determine the probabilities that among 80 drivers randomly chosen in this given city: a. 4 will get at least one parking ticket in any given year, b. At least 3 will get at least at least one parking ticket in any given year, c. Anywhere from 3 to 6, inclusive will get at least one parking ticket in any given year. Solution: Poisson distribution, $f(x;\lambda )=\frac{{\lambda }^{x}{e}^{-\lambda }}{x!}$ a. 4 will get at least one parking ticket in any given year Given that $x=4, n=80, p=0.06, np = 4.8$ $f(4;4.8)=\frac{{4.8}^{4}{e}^{-4.8}}{4!} = 0.182029$ b. At least 3 will get at least at least one parking ticket in any given year Given that $x\ge 3, n=80, p=0.06, np = 4.8$ $P(x\ge 3) = 1-P(x $P(x=0) = f(0;4.8)=\frac{{4.8}^{0}{e}^{-4.8 }}{0!} = 0.00823$ $P(x=1) = f(1;4.8)=\frac{{4.8}^{1}{e}^{-4.8 }}{1!}...